8 research outputs found

    Perspectives on adaptive dynamical systems

    Get PDF
    Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches

    Perspectives on adaptive dynamical systems

    Get PDF
    Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems like the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges, and give perspectives on future research directions, looking to inspire interdisciplinary approaches.Comment: 46 pages, 9 figure

    Explaining event-related fields by a mechanistic model encapsulating the anatomical structure of auditory cortex

    Get PDF
    Event-related fields of the magnetoencephalogram are triggered by sensory stimuli and appear as a series of waves extending hundreds of milliseconds after stimulus onset. They reflect the processing of the stimulus in cortex and have a highly subject-specific morphology. However, we still have an incomplete picture of how event-related fields are generated, what the various waves signify, and why they are so subject-specific. Here, we focus on this problem through the lens of a computational model which describes auditory cortex in terms of interconnected cortical columns as part of hierarchically placed fields of the core, belt, and parabelt areas. We develop an analytical approach arriving at solutions to the system dynamics in terms of normal modes: damped harmonic oscillators emerging out of the coupled excitation and inhibition in the system. Each normal mode is a global feature which depends on the anatomical structure of the entire auditory cortex. Further, normal modes are fundamental dynamical building blocks, in that the activity of each cortical column represents a combination of all normal modes. This approach allows us to replicate a typical auditory event-related response as a weighted sum of the single-column activities. Our work offers an alternative to the view that the event-related field arises out of spatially discrete, local generators. Rather, there is only a single generator process distributed over the entire network of the auditory cortex. We present predictions for testing to what degree subject-specificity is due to cross-subject variations in dynamical parameters rather than in the cortical surface morphology

    Explaining event-related fields by a mechanistic model encapsulating the anatomical structure of auditory cortex

    No full text
    Event-related fields of the magnetoencephalogram are triggered by sensory stimuli and appear as a series of waves extending hundreds of milliseconds after stimulus onset. They reflect the processing of the stimulus in cortex and have a highly subject-specific morphology. However, we still have an incomplete picture of how event-related fields are generated, what the various waves signify, and why they are so subject-specific. Here, we focus on this problem through the lens of a computational model which describes auditory cortex in terms of interconnected cortical columns as part of hierarchically placed fields of the core, belt, and parabelt areas. We develop an analytical approach arriving at solutions to the system dynamics in terms of normal modes: damped harmonic oscillators emerging out of the coupled excitation and inhibition in the system. Each normal mode is a global feature which depends on the anatomical structure of the entire auditory cortex. Further, normal modes are fundamental dynamical building blocks, in that the activity of each cortical column represents a combination of all normal modes. This approach allows us to replicate a typical auditory event-related response as a weighted sum of the single-column activities. Our work offers an alternative to the view that the event-related field arises out of spatially discrete, local generators. Rather, there is only a single generator process distributed over the entire network of the auditory cortex. We present predictions for testing to what degree subject-specificity is due to cross-subject variations in dynamical parameters rather than in the cortical surface morphology

    Why do humans have unique auditory event-related fields? Evidence from computational modeling and MEG experiments

    No full text
    Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject-specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject-specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject-specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core-belt-parabelt structure of the auditory cortex, and with the dynamics based on the leaky-integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand-averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject-specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand-averaged ERF is critically evaluated

    Auditory cortex modelled as a dynamical network of oscillators: Understanding event-related fields and their adaptation

    Get PDF
    Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous feature of auditory cortex (AC). It is not clear what causes adaptation, but short-term synaptic depression (STSD) is a potential candidate for the underlying mechanism. We examined this hypothesis via a computational model based on AC anatomy, which includes serially connected core, belt, and parabelt areas. The model replicates the event-related field (ERF) of the magnetoencephalogram as well as ERF adaptation. The model dynamics are described by excitatory and inhibitory state variables of cell populations, with the excitatory connections modulated by STSD. We analysed the system dynamics by linearizing the firing rates and solving the STSD equation using time-scale separation. This allows for characterization of AC dynamics as a superposition of damped harmonic oscillators, so-called normal modes. We show that repetition suppression of the N1m is due to a mixture of causes, with stimulus repetition modifying both the amplitudes and the frequencies of the normal modes. In this view, adaptation results from a complete reorganization of AC dynamics rather than a reduction of activity in discrete sources. Further, both the network structure and the balance between excitation and inhibition contribute significantly to the rate with which AC recovers from adaptation. This lifetime of adaptation is longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially constant. Finally, we critically evaluate the use of a single exponential function to describe recovery from adaptation

    Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in Streptozotocin-Induced Diabetic Rats

    No full text
    Background: It has been proposed that oxidative stress may contribute to the development of testicular abnormalities in diabetes. Morus alba leaf extract (MAE) has hypoglycemic and antioxidant properties. We, therefore, explored the impact of the administration of MAE on steroidogenesis in diabetic rats. Methods: To address this hypothesis, we measured the serum level of glucose, insulin, and free testosterone (Ts) as well as oxidative stress parameters (including glutathione peroxidase, glutathione reductase, total antioxidant capacity, and malondialdehyde) in the testis of control, untreated and MAE-treated (1 g/day/kg) diabetic rats. In order to determine the likely mechanism of MAE action on Ts levels, we analyzed the quantitative mRNA expression level of the two key steroidogenic proteins, namely steroid acute regulatory protein (StAR) and P450 cholesterol side-chain cleavage enzyme (P450scc), by real-time PCR. Results: The MAE-treated diabetic rats had significantly decreased glucose levels and on the other hand increased insulin and free Ts levels than the untreated diabetic rats. In addition, the administration of MAE to the diabetic rats restored the oxidative stress parameters toward control. Induction of diabetes decreased testicular StAR mRNA expression by 66% and MAE treatment enhanced mRNA expression to the same level of the control group. However, the expression of P540scc was not significantly decreased in the diabetic group as compared to the control group. Conclusion: Our findings indicated that MAE significantly increased Ts production in the diabetic rats, probably through the induction of StAR mRNA expression levels. Administration of MAE to experimental models of diabetes can effectively attenuate oxidative stress-mediated testosterone depletion. Please cite this article as: Hajizadeh MR, Eftekhar E, Zal F, Jaffarian A, Mostafavi-Pour Z. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in Streptozotocin-Induced Diabetic Rats. Iran J Med Sci. 2014;39(2):123-129
    corecore